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Abstract We present a rigorous determination of the critical value of the ground-state quan-
tum Ising model in a transverse field, on a class of planar graphs which we call star-like.
These include the junction of several copies of Z at a single point. Our approach is to use
the graphical, or FK-, representation of the model, and the probabilistic and geometric tools
associated with it.
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1 Introduction

The Hamiltonian of the quantum Ising model with transverse field on a finite graph G =
(V ,E) is the operator

H = −1

2
λ

∑

e=xy∈E

σ (3)
x σ (3)

y − δ
∑

y∈V

σ (1)
x (1)

on the Hilbert space H = ⊗
x∈V C

2. Here the Pauli spin-1/2 matrices

σ (3)
x =

(
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)
, σ (1)

x =
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0 1
1 0

)
, (2)
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Fig. 1 The star graph has a
central vertex of degree k ≥ 3
and k infinite arms, on which
each vertex has degree 2. In this
illustration, k = 4

and we use as basis for each copy of C
2 in H the vectors |+〉x = ( 1

0

)
and |−〉x = ( 0

1

)
; also,

λ, δ > 0 are the spin-coupling and external-field intensities, respectively. Let β ≥ 0 denote
the inverse temperature, and define the positive temperature states

ρG,β(Q) = 1

ZG(β)
tr(e−βH Q), (3)

where ZG(β) = tr(e−βH ) and Q ∈ C
2×2. Also define the ground state to be the limit

ρG of ρG,β as β → ∞. If Gn is an increasing sequence of graphs tending to an infi-
nite graph S, then we may also speak of infinite-volume limits ρS,β = limn→∞ ρGn,β and
ρS = limn→∞ ρGn . The existence of these limits is discussed in [3].

In this article we will use the FK- or random-cluster representation of the ground state,
see for example [16] and references therein. Details will be provided in the next section,
but roughly speaking the FK-representation may be considered as a limit of “discrete time”
random-cluster models on S × (εZ) as ε ↓ 0. This is related to the well-known mapping
of the quantum Ising model onto the classical Ising model in one dimension higher [21],
and the FK-representation of that model [12]. The relevance of this representation is that it
relates the occurrence of long range order in the ground state to the existence of infinite
percolation paths in S × R; here we say that the model exhibits long range order if for all x,
the correlation function

G(x,y) = ρS(σ
(3)
x σ (3)

y ) (4)

is bounded below by a positive function of x. There is a critical value of the ratio λ/δ above
which the model exhibits long range order, and below which it does not.

The main result of this article is a rigorous determination of the critical ratio for a certain
class of planar graphs S (see Definition 1). This extends the calculation for the graph S = Z,
to, amongst other graphs, the star graph, which is the junction of several copies of Z at
a single point. See Fig. 1. A special case of our main result (Theorem 2) is therefore the
following.

Theorem 1 The critical ratio for the ground state quantum Ising model on the star graph
is λ/δ = 2.

In other words the critical ratio is the same for the star as for Z; this is to be expected
since the star is only locally different from Z. We emphasise, however, that the class of
graphs for which we prove this result contains many more graphs than just the star.

The quantum Ising model on Z is exactly solvable and has been thoroughly studied. In
for example [20] the critical ratio λ/δ = 2 is computed for this model, and it is also proved
that correlations decay exponentially below the critical point; see also [21] and references
therein. The latter fact will be used extensively in this paper. Typically, the proofs have relied
on matrix methods and techniques such as Jordan–Wigner transformation. Recently, in [7],
sharpness of the phase transition, and hence exponential decay of correlations below the
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Fig. 2 A star-like graph G (left) and its line-hypergraph H (right). Any vertex of degree ≥ 3 in G is associ-
ated with a “polygonal” hyperedge in H

critical point, was established rigorously for S = Z
d with any d ≥ 1, using graphical meth-

ods similar to the corresponding proof [2] for the classical Ising model. Combining this
result with duality arguments analogous to the classical two-dimensional random-cluster
model [12], this gives another proof that the critical ratio is λ/δ = 2 for this model, using
only tools from stochastic geometry (see [7] for details). One aim of this paper is to extend
the graphical methods, and show how they can be applied to a wider range of structures than
just Z. The Ising model on the star-graph has also recently arisen in the study of bound-
ary effects in the two-dimensional classical Ising model, see for example [18, 19]. Similar
geometries have also arisen in different problems in quantum theory, such as transport prop-
erties of quantum wire systems, see [10, 15, 17].

2 Background and Notation

In this article we will let G = (V ,E) be a star-like graph:

Definition 1 A star-like graph is a countably infinite connected planar graph, in which all
vertices have finite degree and only finitely many vertices have degree larger than two.

Such a graph is illustrated in Fig. 2; note that the graph of Theorem 1 is an example in
which exactly one vertex has degree at least three.

Fix a planar embedding G of G, and denote X = G × R; also let X = G × R :=
(V × R,E × R). We will sometimes use X and X interchangably. Let O be a fixed but
arbitrary vertex of G of degree two or more, which we think of as the origin.

Recall that a hypergraph is a set W together with a collection F of subsets of W , called
edges; a graph is a hypergraph in which all edges contain two elements. In our analysis we
will use a suitably defined hypergraph “dual” of X: let H = (W,F ) be the “line-hypergraph”
of G, where W = E and the set {e1, . . . , en} ⊆ E = W is in F if and only if e1, . . . , en are
all the edges adjacent to some particular vertex of G. Note that only finitely many edges
of H have size larger than two. There is a natural planar embedding of H defined via the
embedding G, in which an edge of size more than two is represented as a polygon. See
Fig. 2. Let Y = H × R and Y = H × R.
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Fig. 3 A configuration ω on
Z × R. Bridges are represented
as horizontal line segments, and
deaths as crosses

Our configuration space 	 will be the set of pairs ω = (B,D) where B ⊆ E × R and
D ⊆ V ×R are locally finite, which is to say that B ∩({e}×[−n,n]) and D∩({v}×[−n,n])
are finite sets for all e ∈ E, v ∈ V and n ∈ N. We think of B as a set of bridges and D as a
set of deaths or cuts. There is a natural embedding of any ω ∈ 	 into X, where deaths are
represented as missing points and bridges as “horizontal” lines connecting two “vertical”
lines. See Fig. 3 for an illustration of this when G = Z. Often we will identify ω ∈ 	 with
its embedding, ω ≡ (X \ D) ∪ B .

Denote by d(·, ·) the graph distance in G, and let 
n ⊆ X denote the set of points (v, t)

and (e, t) where v ∈ V has d(v, O) ≤ n, e ∈ E has at least one endpoint at distance at most n

from O, and |t | ≤ n. For each ω ∈ 	, we will employ two restricted embeddings ω1
n and ω0

n

of ω into X, one “wired” and one “free”. The free embedding ω0
n is simply the intersection

of (the natural embedding of) ω with 
n. The wired embedding ω1
n is defined by

ω1
n = ω0

n ∪ {(v, t) ∈ V × R : d(v, O) = n + 1, |t | ≤ n} ∪ {(e, t) ∈ 
n : t = ±n}, (5)

where we have identified v ∈ V and e ∈ E with their embeddings in G. In words, ω1
n is

obtained by tying together the top and bottom of ω0
n, as well as all bridges portruding from

its “sides”. We let the functions k0
n, k

1
n : 	 → N count the number of connected components

of ω0
n and ω1

n, respectively.
Equip 	 with the Skorokhod topology and the associated σ -algebra; the details of their

definitions are not immediately important, but may be found in [5] or [6]. Fix λ, δ > 0
and let μ = μλ,δ be the probability measure on 	 governed by a collection of independent
Poisson processes Be on {e}×R, for e ∈ E, and Dv on {v}×R, for v ∈ V . Here each Be has
intensity λ, each Dv has intensity δ, and B = ⋃

e∈E Be,D = ⋃
v∈V Dv . This μ is the space-

time (or “continuum”) percolation measure of [13]. We may now define the random-cluster
probability measures.

Definition 2 The random-cluster measure �b
n on 
n with parameters λ, δ, q > 0 and bound-

ary condition b ∈ {0,1} is the probability measure on 	 given by

d�b
n

dμ
(ω) ∝ qkb

n(ω), ω ∈ 	. (6)
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Fig. 4 Part of a configuration ω

(solid) and its dual ωd (dashed
with grey crosses) in the special
case when G = Z

In the next result, let

θb = �b((O,0) lies in an unbounded component). (7)

The following basic facts may be proved in a conventional manner, as in [12, Theorem 5.5];
details for this particular model may be found in [6].

Proposition 1 Let q ≥ 1. The weak limits �b := limn→∞ �b
n exist, and enjoy a phase transi-

tion in the sense that there is ρc = ρc(q) ∈ (0,∞), depending only on q (and G), such that
θb = 0 if λ/δ < ρc and θb > 0 if λ/δ > ρc . We call ρc the critical value of the random-cluster
model on G × R.

The relevance of the space-time random-cluster measures to the quantum Ising (or more
generally quantum Potts) model is explained in [3]; in particular the ground state quantum
Potts model on G exhibits long-range-order iff the corresponding random-cluster model has
θb > 0. Hence, to investigate the phase-diagram of the quantum Ising model we will set
q = 2 and focus on finding the critical value ρc above which percolation occurs.

Let us say a few more words about the “dual” Y of X. Given any configuration ω ∈ 	,
one may associate with it a dual configuration on Y by placing a death wherever ω has
a bridge, and a (hyper)bridge wherever ω has a death. This is illustrated in Fig. 4. More
precisely, we let 	d be the set of pairs of locally finite subsets of F × R and W × R, and for
each ω = (B,D) ∈ 	 we define its dual to be ωd := (D,B). As before, we may identify ωd

with its embedding in Y, noting that some bridges may be embedded as polygons. We let
b

n and b denote the laws of ωd under �1−b
n and �1−b respectively.

The case when G = Z is particularly important, and for this case we use the lower case
symbols φ and ψ in place of � and  , respectively. When G = Z, the dual space Y is
isomorphic to X, and we have the following result. Again the proof is similar to that for the
discrete random-cluster model on Z

2, but details for our model may be found in [6].

Lemma 1 If φb
n,φ

b have parameters q , λ and δ, then the dual measures ψ1−b
n ,ψ1−b are

random cluster measures with parameters q ′ = q , λ′ = qδ and δ′ = λ/q , and boundary
condition 1 − b.
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Recall that there is a partial order on 	 given by (B ′,D′) = ω′ ≥ ω = (B,D) if B ′ ⊇ B

and D′ ⊆ D, and that an event A is called increasing if whenever ω ∈ A and ω′ ≥ ω then
also ω′ ∈ A. Also recall that A is called a cylinder event if it only depends on a bounded
region of X, which is to say that there is n such that if ω = ω′ on 
n then ω ∈ A if and only
if ω′ ∈ A.

Definition 3 Let κ be a probability measure on 	.

– We say that κ is positively associated if for A,B any increasing cylinder events,
κ(A ∩ B) ≥ κ(A)κ(B).

– Another probability measure κ1 on 	 stochastically dominates κ if for all increasing
cylinder events A, we have κ1(A) ≥ κ(A). We write κ1 ≥ κ .

– We say that κ has the positivity property if for all ε > 0 there exists a constant 0 < c =
c(ε) < 1 such that for all e ∈ E,v ∈ V, t ∈ R,

c < κ(no bridges in {e} × [t, t + ε]) < 1 − c (8)

and

c < κ(no deaths in {v} × [t, t + ε]) < 1 − c. (9)

Proposition 2 Let q ≥ 1. The measures �b
n,�

b,b
n,b (b = 0,1) are positively associated

and have the positivity property. Moreover, �1 ≥ �0 and 1 ≥ 0.

The statement of Proposition 2 appears in [3] as well as in [1]; the proof is similar to the
discrete random-cluster model and may be found in [6].

3 The Critical Value

We assume henceforth that q = 2. It is known that, if G = Z, the critical value ρc(2) = 2.
The following is the main result of this paper.

Theorem 2 Let G be any star-like graph. Then the critical value on G × R is ρc(2) = 2.

In other words, the critical value for any star-like graph is the same as for Z. Simpler argu-
ments than those presented here can be used to establish the analogous result when q = 1,
namely that ρc(1) = 1. Also, the same arguments can be used to calculate the critical prob-
ability of the discrete graphs G × Z when q = 1,2.

Here is a brief outline of the proof of Theorem 2. First we make the straightforward
observation that ρc(2) ≤ 2. Next, we use exponential decay to establish the existence of
certain infinite paths in the dual model when λ/δ < 2. Finally, we show how to put these
paths together to form “blocking circuits” in Y, which prevent the existence of infinite paths
in X when λ/δ < 2. Parts of the argument are inspired by [11].

Lemma 2 For G any star-like graph, ρc(2) ≤ 2.

Proof Any star-like graph G contains an isomorphic copy of Z as a subgraph. Let Z be
such a subgraph; we may assume that O ∈ Z. Also we let φb

n,φ
b denote the random-cluster

measures on Z × R. For each n ≥ 1, let Cn be the event that no two points in 
n ∩ (Z × R)
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are connected by a path which leaves Z×R. Clearly each Cn is a decreasing event. It follows
from a standard property of random-cluster measures, sometimes called the DLR-property,
that �b

n(· | Cn) = φb
n(·). The proof of this uses standard techniques [12, Theorem 3.7]; details

for this model may be found in [6]. If A is an increasing cylinder event, this means that

φb
n(A) = �b

n(A | Cn) ≤ �b
n(A), (10)

i.e. φb
n ≤ �b

n for all n. Letting n → ∞ it follows that φb ≤ �b . If λ/δ > 2 then φb((O,0) ↔
∞) > 0 so then also

�b((O,0) ↔ ∞) > 0, (11)

which is to say that ρc(2) ≤ 2. �

3.1 Infinite Paths in the Half-Plane

Let us now establish some facts about the random-cluster model on Z+ × R which will be
useful later. Our notation is as follows: for n ≥ 1,

Sn = {(a, t) ∈ Z × R : −n ≤ a ≤ n, |t | ≤ n}
(12)

Sn(m, s) = Sn + (m, s) = {(a + m, t + s) ∈ Z × R : (a, t) ∈ Sn}.

For brevity write Tn = Sn(n,0); also let ∂ denote the boundary,

∂Sn = {(a, t) ∈ Z × R : a = ±n or t = ±n} (13)

and ∂Sn(m, s) = ∂Sn + (m, s). For b = 0,1 and � one of Sn,Tn, we let φb
� denote the q = 2

random-cluster measure on � with boundary condition b and parameters λ, δ. Note that

φb = lim
n→∞φb

Sn
, ψb = lim

n→∞ψb
Sn

. (14)

We will also be using the limits

φw = lim
n→∞φ1

Tn
, ψf = lim

n→∞ψ0
Tn

. (15)

These are measures on configurations ω on Z+ × R; but according to our definition they
cannot be random-cluster measures since the regions Tn do not tend to the whole of Z × R.
However, standard arguments let us deduce all the properties of φw,ψf that we need. In
particular ψf and φw are mutually dual (with the obvious interpretation of duality) and they
enjoy the positive association and positivity properties of Definition 3.

Let W be the “wedge”

W = {(a, t) ∈ Z+ × R : 0 ≤ t ≤ a/2 + 1}, (16)

and write 0 for the origin (0,0).

Lemma 3 Let λ/δ < 2. Then

ψf (0 ↔ ∞ in W) > 0. (17)
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Here is some intuition behind the proof of Lemma 3. The claim is well-known with ψ0

in place of ψf , by standard arguments using duality and exponential decay. However, ψf is
stochastically smaller than ψ0, so we cannot deduce the result immediately. Instead we pass
to the dual φw and establish directly a lack of blocking paths. The problem is the presence
of the infinite “wired side”; we get the required fast decay of two-point functions by using
the following result.

Proposition 3 Let λ/δ < 2. There is α > 0 such that for all n,

φ1
Sn

(0 ↔ ∂Sn) ≤ e−αn. (18)

In words, correlations decay exponentially under finite volume measures as soon as they
do so under infinite volume measures. Results of this type for the classical Ising and random-
cluster models appear in many places. In [8] and [9] it is proved for general q ≥ 1 random-
cluster models in two dimensions, and more general results about the two-dimensional case
appear in [4]. A proof of general results of this type for the classical Ising model in any
dimension appears in [14]. Below we adapt the argument in [14] to the current setting,
with the difference that we shorten the proof by using the Lieb inequality in place of the
GHS-inequality; use of the Lieb-inequality was suggested by Grimmett (personal communi-
cation). Note that the same argument works in any dimension.

Proof Let Sn ⊇ Sn denote the “tall” box

Sn = {(a, t) ∈ Z × R : −n ≤ a ≤ n, |t | ≤ n + 1}. (19)

We will use a variant of the random-cluster measure on Sn which has non-constant inten-
sities for bridges and deaths, and also a process of ghost-bonds. To this end we create a
new site g, which we think of as a “point at infinity”, and let δ(·), γ (·) : Z × R → R and
λ(·) : (Z + 1/2) × R → R be bounded, nonnegative and measurable functions. Given inde-
pendent Poisson processes of bridges and deaths of rates λ(·) and δ(·), respectively, and of
links to g of rate γ (·), we may define random-cluster measures as in Definition 2, where
now any components connected to g are to be counted as the same.

The particular intensities we use are these. Fix n, and fix m ≥ 0, which we think of as
large. Let λ(·), δ(·) and γm(·) be given by

δ(a, t) =
{

δ, if (a, t) ∈ Sn

0, otherwise,

λ(a + 1/2, t) =
{

λ, if (a, t) ∈ Sn and (a + 1, t) ∈ Sn

0, otherwise,
(20)

γm(a, t) =
⎧
⎨

⎩

λ, if exactly one of (a, t) and (a + 1, t) is in Sn

m, if (a, t) ∈ Sn \ Sn

0, otherwise.

In words, the intensities are as usual “inside” Sn and in particular there is no external field
in the interior; on the left and right sides of Sn, the external field simulates the wired bound-
ary condition; and on top and bottom, the external field simulates an approximate wired
boundary (as m → ∞). We introduce another parameter r ∈ [0,1], and let φ̃r

m,n denote the
random-cluster measure on Sn with intensities λ(·), δ(·), rγm(·). Note that φ̃0

m,n and φ0
Sn

agree on events defined on Sn, for any m.
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Let X denote Sn \ Sn together with the left and right sides of Sn. By the Lieb inequality,
proved for the space-time Ising formulation of the present model in [7] (see also [6]), we
have that

φ̃1
m,n(0 ↔ g) ≤ e8δ

∫

X

dx φ̃0
m,n(0 ↔ x)φ̃1

m,n(x ↔ g) ≤ e8δ

∫

X

dx φ̃0
m,n(0 ↔ x), (21)

since X separates 0 from g. Therefore, by stochastic domination by the infinite-volume
measure,

φ̃1
m,n(0 ↔ g) ≤ e8δ

∫

X

dx φ0(0 ↔ x). (22)

All the points x ∈ X are at distance at least n from the origin. By exponential decay in the
infinite volume, as proved in [7] using similar methods to the discrete case [2], there is an
absolute constant α̃ > 0 such that

φ̃1
m,n(0 ↔ g) ≤ e8δ|X|e−α̃n = e8δ(8n + 2)e−α̃n. (23)

Now let C be the event that all of Sn \Sn belongs to the connected component of g, which is
to say that all points on Sn \Sn are linked to g. Then by the DLR-property of random-cluster
measures the conditional measure φ̃1

m,n(· | C) agrees with φ1
Sn

(·) on events defined on Sn.
Therefore

φ1
Sn

(0 ↔ ∂Sn) = φ̃1
m,n(0 ↔ ∂Sn | C) = φ̃1

m,n(0 ↔ g | C)

≤ φ̃1
m,n(0 ↔ g)

φ̃1
m,n(C)

≤ e8δ

φ̃1
m,n(C)

· (8n + 2)e−α̃n. (24)

Since φ̃1
m,n(C) → 1 as m → ∞ we conclude that

φ1
Sn

(0 ↔ ∂Sn) ≤ e8δ(8n + 2)e−α̃n. (25)

Since each φ1
Sn

(0 ↔ ∂Sn) < 1 it is a simple matter to tidy this up to get the result claimed. �
Proof of Lemma 3 Let T = {(a, a/2 + 1) : a ∈ Z+} be the “top” of the wedge W . We claim
that

∑

n≥1

φw((n,0) ↔ T in W) < ∞. (26)

Once this is proved, it follows from the Borel–Cantelli lemma that with probability one
under φw , at most finitely many of the points (n,0) are connected to T inside W . Hence
under the dual measure ψf there is an infinite path inside W with probability one, and by
the positivity- and positive association properties it follows that

ψf (0 ↔ ∞ in W) > 0, (27)

as required.
To prove the claim we note that, if n is larger than some constant, then the event “(n,0) ↔

T in W ” implies the event “(n,0) ↔ ∂Sn/3(n,0)”. The latter event, being increasing, is more
likely under the measure φ1

Sn/3(n,0) than under φw . But by Proposition 3,

φ1
Sn/3(n,0)((n,0) ↔ ∂Sn/3(n,0)) = φ1

Sn/3
(0 ↔ ∂Sn/3) ≤ e−αn/3, (28)

which is clearly summable. �
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Fig. 5 Construction of a
“half-circuit” in Z+ × R. With
probability one, any infinite path
in the lower wedge must reach
the line L2n+1, and similarly for
any infinite path in the
upside-down wedge. Any pair of
such paths starting on the
horizontal axis must cross

3.2 Proof of the Main Result

We prove one more lemma about the half-plane before going on to the main result; the proof
uses a variant of standard blocking arguments.

Lemma 4 Let λ/δ < 2. There exists ε > 0 such that for each n,

ψf ((0,2n + 1) ↔ (0,−2n − 1) off Tn) ≥ ε. (29)

Proof Let Ln = {(a,n) : a ≥ 0)} be the horizontal line at height n, and let ε > 0 be such that
ψf (0 ↔ ∞ in W) ≥ √

ε. We claim that

ψf ((0,−2n − 1) ↔ L2n+1 off Tn) ≥ √
ε. (30)

Clearly ψf is invariant under reflection in the x-axis, and standard arguments [12, Theo-
rem 4.19] imply that it is also invariant under vertical translation. Thus once the claim is
proved we get that

ψf ((0,2n + 1) ↔ (0,−2n − 1) off Tn)

≥ ψf ((0,−2n − 1) ↔ L2n+1 off Tn and (0,2n + 1) ↔ L−2n−1 off Tn)

≥ (
√

ε )2, (31)

as required. See Fig. 5.
The claim follows if we prove that

ψf (0 ↔ ∞ in R) = 0, (32)

where R is the strip

R = {(a, t) : a ≥ 0,−2n − 1 ≤ t ≤ 2n + 1}. (33)

However, (32) follows from the positivity property of Definition 3 and the Borel–Cantelli
lemma, since the event “no bridges between {k}× [−2n− 1,2n+ 1] and {k+1}× [−2n−1,
2n + 1]” must happen for infinitely many k with ψf -probability one. To see this we can
compare ψf with an independent percolation measure, as in the proof of Proposition 3. We
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have that ψf ≤ μ, where μ has parameters λ, δ; under μ the events above are independent,
so

ψf (0 ↔ ∞ in R) ≤ μ(0 ↔ ∞ in R) = 0. (34)

�

Proof of Theorem 2 We may assume that G �=Z, since the case G=Z is known. Let λ/δ<2,
and recall that G consists of finitely many infinite “arms”, where each vertex has degree
two, together with a “central” collection of other vertices. On each of the arms, let us fix one
arbitrary vertex (of degree two) and call it an exit point. Let U denote the set of exit points
of G.

Given an exit point u ∈ U , call its two neighbours v and w; we may assume that they are
labelled so that only v can reach the origin O without passing u. If the edge uv were removed
from G, the resulting graph would consist of two components, where we denote by Ju the
component containing w. Let �̂b

n, �̂
b denote the marginals of �b

n,�
b on Xu := Ju × R;

similarly let ̂b
n, ̂b denote the marginals of the dual measures. Of course Xu is isomorphic

to the half-plane graph considered in the previous subsection. By positive association and
the DLR-property of random-cluster measures, �̂0

n ≤ φ1
Tn(u), so letting n → ∞ also �̂0 ≤ φw .

Passing to the dual, it follows that ̂1 ≥ ψf . The (primal) edge uv is a vertex in the line-
hypergraph; denoting it still by uv we therefore have by Lemma 4 that there is an ε > 0 such
that for all n,

1((uv,−2n − 1) ↔ (uv,2n + 1) off Tn(u) in Xu) ≥ ε. (35)

Here Tn(u) denotes the copy of the box Tn contained in Xu. Letting A denote the intersection
of the events above over all exit points u, and letting A1 = A1(n) be the dual event A1 =
{ωd : ω ∈ A}, it follows from positive association that �0(A1) ≥ εk , where k = |U | is the
number of exit points. Note that A1 is a decreasing event in the primal model. The intuition
is that on A1, no point in Tn(u) can reach ∞ without passing the line {u}×[−2n−1,2n+1],
since there is a dual blocking path in Xu.

Next let I denote the (finite) subgraph of G spanned by the complement of all the Ju

for u ∈ U , and let A2 = A2(n) denote the event that for all vertices v ∈ I , the intervals
{v} × [2n + 1,2n + 2] and {v} × [−2n − 1,−2n − 2] all contain at least one death and
the endpoints of no bridges (in the primal model). By the positivity property, there is η > 0
independent of n such that �0(A2) ≥ η. So by positive association �0(A1 ∩ A2) ≥ ηεk > 0.
On the event A1 ∩ A2, no point inside the union of I × [−n,n] with

⋃
u∈U Tn(u) can lie

on an infinite path. See Fig. 6. Taking the intersection of the A1(n) ∩ A2(n) over all n, it
follows that

�0(there is no unbounded connected component) ≥ ηεk. (36)

The event that there is no unbounded connected component is a tail event. All infinite-
volume random-cluster measures are tail-trivial (see [12, Theorem 4.19] or [6]), so it fol-
lows, whenever λ/δ < 2, that

�0(0 �↔ ∞) = 1. (37)

In other words, ρc(2) ≥ 2. Combined with the opposite bound in Lemma 2, this gives the
result. �
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Fig. 6 The dashed lines indicate
dual paths that block any primal
connection from the interior
to ∞. Note that this figure
illustrates only the simplest case
when G is a junction of lines at
a single point
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